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Abstract— In the near future, traditional or low-automation
vehicles will share the roads with Connected and Autonomous
Vehicles (CAVs) over many years. Yet, this complexity may
impose new unknowns on the real-time crash risk evaluation.
Consequently, it is important to explore crash risk analysis
in such kind of mixed traffic flow environments. This paper
constructed several special traffic variables in mixed traffic
flow environments and proposed the kernel logistic regression
(KLR) model to evaluate the crash risk in real-time. A simulated
urban expressway corridor based on the North-South Elevated
Road in Shanghai, China, is developed in SUMO, for the
purpose of collecting the traffic safety data and traffic data (i.e.,
virtual detector data and Global Navigation Satellite System
(GNSS) data) in mixed traffic flow environments. The prediction
performance of KLR models was tested and analyzed with the
simulated data, and is also compared with that of support vector
machines (SVM) models. The results show that KLR has a
good prediction performance like SVM. Considering KLR can
provide probability estimates directly and can naturally extend
to multi-class classification, priority should be given to KLR
in similar problems, especially when crash risk is classified
into multiple levels. The proposed KLR model is therefore
recommended and has the potential to evaluate the real-time
crash risk in the mixed traffic flow environment.

Keywords–crash risk analysis, mixed traffic flow, kernel
logistic regression, GNSS data

I. INTRODUCTION

Enormous efforts have been made for several years to
investigate the technologies required by Connected and Au-
tonomous Vehicles (CAVs) and cooperative driving systems
(i.e., V2X or vehicle-to-all systems), which are emerging
concepts to reduce traffic congestion, enhance traffic safety,
improve traffic efficiencies, and etc. However, most of these
studies focus on the scenarios with the CAVs’ full penetra-
tion. Recently, more and more people believe that this kind
of scenario will take unexpected time to achieve. Traditional
or low-automation vehicles will therefore share the network
space with these CAVs over many years. Besides, real-
time crash risk evaluation is a research hot-spot to employ
real-time traffic data to evaluate the crash risk in the road
network and then identify when and where a crash is likely to
occur for the further proactive traffic managements. However,
most previous crash risk analyses apply the data from the
monitoring devices installed fixedly in the road, such as loop
detectors [1][2], automatic vehicle identification [3], and etc.
Consequently, it is important to explore crash risk analysis
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in such kind of mixed traffic flow environments, where the
data sources are different.

Logistic regression (LR) models are widely applied in
previous crash risk evaluation studies, such as [1][2][4][5].
These traditional logistic regression models are built on the
assumptions about the distribution of data and a well-defined
function between the dependent variable and independent
predictors [4]. When these basic assumptions were not met,
inefficient estimations and incorrect inferences would be
produced [6]. To this end, this paper proposes a kernel
logistic regression model (KLR) to develop the relationship
between the safety state and traffic variables.

The contents of the paper will be structured as follows.
First, the overall methodology will be introduced, includ-
ing the KLR model, feature construction and selection,
and evaluation criterion. Then the simulation experiment,
including scenario design, and network development and
calibration are presented. Afterwards, the results about the
feature selection, model development and performance are
described and analyzed. It should be noted that the support
vector machines (SVMs) and standard logistic regression
models are also applied to compare with the proposed KLR
models. Finally, a conclusion is given, focusing on the main
findings but also limitations and future directions.

II. METHODOLOGY

A. Kernel Logistic Regression Model

A danger recognition system can be modeled as a su-
pervised binary classification problem. A calibrated classi-
fication model for crash risk prediction needs to evaluate
the safety level of a driving situation based on the vicinity
traffic states, surrounding environment, etc. Training data
used to estimate and evaluate the model include the data
for both dangerous events and normal safe driving in the
corresponding scenario. Let X ∈ Rn×nd be a feature matrix
where n is the number of samples and nd is the number
of features. Let y be a binary vector marking the class of
samples. For an instance xi ∈ Rnd (a row in X), the potential
label is either yi=1 or yi=0. In this study, yi=1 corresponds
to the occurrence of a dangerous event, while yi=0 labels
the normal driving sample. A classifier is thus to decide the
instance xi to be dangerous or safe based on its attributes.
LR, a probabilistic statistical method, which has been proven
to be a powerful classifier, solves the classification problem
by optimizing

min
w

1

2
wTw + C

n∑
i=1

ln(1 + e−yif(xi)) (1)



where C is a regularization parameter, w is the vector of
parameters to be determined. f(x) is given by

f(x) = wTx (2)

According to the representer theorem, the optimal w can
be written as

w =

n∑
i=1

αiyixi (3)

LR, however, tends to be biased towards the majority class
[14], so its kernel version will be used in this study, which
has shown performance as good as SVM. In kernel-based
classification methods, an input vector x will be mapped
into the Hilbert spaces generated by a positive definite kernel
K, i.e., x 7→ ϕ(x) where ϕ : Rnd 7→ Rn

(ϕ)
d . However, it

is not required to do the actual mapping ϕ(·) as it can be
done implicitly by K when ϕ(x)Tϕ(x̂) can be computed as
K(x, x̂). The kernel version of Equation (3) is given by

w =
n∑
i=1

αiyiϕ(xi) (4)

Combine Equation (2) and (4) gives the optimal f(x):

f(x) =

n∑
i=1

αiyiK(x,xi) (5)

Hence, fitting a KLR is equivalent to a finite-dimensional
convex programming problem descried as

min
α

1

2

n∑
i=1

n∑
j=1

αiαjK̃(xi,xj)+C

n∑
i=1

ln(1+e−
∑

j αjK̃(xi,xj))

(6)
where K̃(xi,xj) = yiyjK(xi,xj). This problem can be
solved efficiently by the Limited memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm presented in [16].

Note that, ln(1 + e−
∑

j αjK̃(xi,xj)) is the negative log-
likelihood (NLL) associated with the probabilistic model

P (y|x,w) =
1

1 + e−
∑

j αjK̃(xi,xj)
(7)

In this study, we apply the Radial Basis Function (RBF)
kernel given as below.

K(xi,xj) = e−γ‖xi−xj‖2 (8)

where γ is a positive parameter reflecting the influence of a
single training sample. Generally, γ is set to be 1/n.

B. Event Definition Based on Safety Surrogate Measures

Due to the lack of field data of mixed traffic, most studies
investigating the safety effect of CAVs used surrogate safety
measures (SSM) to evaluate the crash risk in the mixed
traffic context (e.g., [10], [11]). Time-to-collision (TTC) is
one of the most popular indicators for rear-end crash risk
assessment. TTC reflects the time for a faster follower to
crash into a leader if their relative speed stays unchanged in
follow-lead situations, which is calculated as below.

TTC =

{
gl−gf−L
vf−vl if vf > vl

∞ otherwise
(9)

where gl, gf are the longitudinal location of the leader and
follower, respectively, while vl and vf are the corresponding
speeds. L is the length of the following vehicle.

On the other hand, for lateral movement, we consider the
critical moment when the vehicle finishing lane-changing
and check if its distance to the proceeding vehicle and the
following vehicle (on the target lane) is safe. Here we define
a novel indicator named lane-changing distance difference
ratio (DDR) to measure the risk of lateral movements. DDR
is calculated as

DDR = min(
df − d∗f
df

,
dl − d∗l
dl

) (10)

where dl, df are the distance of the ego vehicle to its leader
and follower right after it finishes lane-changing. d∗l (d∗f ) is
the corresponding required secured longitudinal gap to the
nearest leader (follower) to fulfill deceleration constraints.

A smaller TTC or DDR indicates a more hazardous
situation. Referring to [10] and [11], the TTC threshold for
recording a dangerous situation is set to be 2 s in this study.
And the DDR threshold is set to be -0.12.

C. Feature Construction

In previous studies on crash risk analysis (e.g., [12],[13]),
loop detector data (e.g., speed, volume) are mostly used
when estimating crash predicting models and distinguishing
precursor crash conditions. In general, the detector data are
aggregated in a T -second interval to eliminate the random-
ness. It has been validated that the closest two data points
in either temporal dimension or spatial dimension on the
upstream and downstream of the crash are most significant.
Therefore, 8 data slices are matched with a dangerous event,
as specifically shown in Figure 1a. For instance, for a crash
happened at 07:33:21, when T is 30, data of the closest
two detectors on the upstream/downstream during [07:32:00,
07:32:30) and [07:32:30, 07:33:00) are collected as candidate
explanatory variables for the corresponding event. Note that,
weather conditions and geometric features are not explicitly
considered here. However, one can easily extend the model
with these variables in any cases if they are available.

(a) Data points of detector data (b) Data points of GPS data
Fig. 1. Conceptual definition of data points

In the era of mixed traffic with human driving vehicles
(HVs) and CAVs, however, data sources are not limited to
detectors installed on the network. Vehicle-to-infrastructure
(V2I), vehicle-to-vehicle (V2V) and GNSS devices (without



loss of generality, we take Global Positioning System (GPS)
as example hereafter) assembled to CAVs provide the pos-
sibility to catch the exact speed and location of CAVs and
the relative distance between them. Consequently, from the
GPS data of CAVs, we can extract similar variables as those
refined from loop detector data. Clearly, assuming the control
center has the access to the GPS data in real-time, we can
construct finer and more accurate variables to represent the
traffic states of upstream/downstream relevant to the sample.
Figure 1b shows the definition of GPS-based variables. For
the same event arisen at 07:33:21, the data point in any sub-
segment in {[yE−2l, ye−l), [yE−l, yE), (yE , yE+l], (yE+
l, yE + 2l]} during any time slice in {[07 : 32 : 21, 07 : 32 :
51), [07 : 32 : 51, 07 : 33 : 21)} is extracted, resulting in 8
data points as well.

Furthermore, except the statistics (i.e., mean and standard
deviation) of speed and volume of CAVs, each data point
also contains the statistics of the distance between every two
CAVs. One should know that the variables constructed on
speed and volume can only capture the temporal characteris-
tics of the traffic, while the variables developed on distance
can explain the spatial characteristics that are ignored in the
literature. Thus, GPS-based variables can capture both spatial
and temporal factors that may lead to a dangerous event.

D. Feature Selection

Overall, we extract 32 detector-based and 32 GPS-based
variables from the detector dataset and CAV GPS dataset,
respectively. However, some of them are highly correlated
and thus may lead to biased estimates. Besides, not all vari-
ables are significant in predicting dangerous events. Random
Forest (RF) is an ensemble of randomized decision trees that
has been widely used to evaluate the variable importance in
preliminary before applying any learning methods to solve
certain regression/classification problem. In this study, vari-
ables are selected based on Gini importance by leveraging
RF. Algorithm 1 presents the procedure for selecting the most
significant and uncorrelated variables.

Algorithm 1 Random Forest for variable selection
1: Candidate explanatory variable set: X
2: Initialize selected variable set: S = ∅
3: Define the minimum acceptable correlation: ρmin
4: i = 0
5: for i < nv do
6: x̃i = argmaxx∈X Gini(RandomForest(X))
7: C = {xj |corr(x̃i, xj) ≥ ρmin, xj ∈ X}
8: Update S : S = S ∪ {x̃i}
9: Update X : X = X/C

10: i = i+ 1
11: end for

E. Evaluation Criterion

We apply the following metrics to evaluate the perfor-
mance of the proposed model and make a comparison with
other advanced models.

1) Balanced accuracy: The balanced accuracy (B-
accuracy) of a binary classification problem is given by

B-accuracy =
1

2
(

TP

TP + FN
+

TN

FP + TN
) (11)

where TP, FN, TN and FP are true positive, false negative,
true negative and false positive, respectively. It is worth men-
tioning that, B-accuracy ([0,1]) is essentially the arithmetic
mean of the recall of each class, which implies two classes
have the same weight and importance. Accuracy instead,
depends on the performance achieved in the majority class,
while the performance in one another is less important. Thus,
B-accuracy is more preferable than accuracy in crash risk
analysis.

2) F1 score:

F1 = 2 · Precision ·Recall
Precision+Recall

(12)

F1 score ([0,1]) is calculated as the weighted average be-
tween precision and recall. It has been found that this metric
imposes more importance on the smaller class and it mostly
rewards models coming out with similar precision and recall.

3) AUC: As the most popular metric in classifier evalu-
ation, the area under the Receiver Operating Characteristic
curve (AUC) is also used to evaluate the models here. The
Receiver Operating Characteristic (ROC) curve is a trade-
off between the true positive rate (TPR) and false positive
rate (FPR) with FPR on the x-axis and TPR on the y-axis.
AUC ([0,1]) summarizes the information of the ROC curve
in one number to represent the predictive performance of the
model.

III. EXPERIMENT SETUP
A. Scenario and Simulation

To implement and evaluate the proposed modeling frame-
work, we conduct the simulation on a 17 km segment of
the North-South Elevated Road (from the connection with
the Inner Ring Road to the connection with the Outer Ring
Expressway) in Shanghai, China, with 3 lanes or 4 lanes at
most sub-segments. To simplify the implementation, we only
simulate the northbound corridor. Apart from the upstream
and downstream of the trunk link, this segment also connects
to 7 on-ramps and 12 off-ramps. Figure 2 shows the abstract
layout of the simulated segment marking the relative location
of on-ramps and off-ramps. It has a speed limit of 80 km/h
(trucks are not considered). The North-South Elevated Road
passing through the city center of Shanghai is one of the
main trunk links crossing the Huangpu River and plays a
significant role in daily commuting. Due to its function in
distributing the high demand spatially, North-South Elevated
Road has become a typical high-risk trunk link. High demand
renders traffic congestion/jams, especially during peak hours,
and thus increases the possibility of rear-end collisions. On
the other hand, distributing the demand via the linked on-
ramps and off-ramps induces more lane-changing actions,
which also increases the crash risk. Hence, implementing
experiments on this segment provides an opportunity to an-
alyze the crash mechanism under complex traffic situations,



especially at the early stage of mixed traffic with HVs and
CAVs.

Fig. 2. The Silhouette of the simulation road segment.

The open-source simulator, Simulation of Urban MObility
(SUMO [7]), is used to simulate the traffic of a day on
the target road segment and collect the data as input to the
proposed model. Corresponding to the deliverable 3.1 [8]
of the Transition Areas for Infrastructure-Assisted Driving
(TransAID) project, where the modeling and implementation
of AVs and CAVs in SUMO are explicitly discussed, we dis-
tinguish HVs and CAVs in car-following behavior and lane-
changing behavior1. It is worth mentioning that, we focus on
the early stage of the operation of mixed traffic, where neither
CAV exclusive lanes are available nor platooning driving
is developed due to the low penetration rate. As a result,
no external control algorithm is required to manipulate the
driving of CAVs at each simulation step. We randomly select
1000 dangerous conflicts from the recorded event dataset and
select 4 relevant normal driving cases for each dangerous
driving event. After dropping the samples without CAV
data being recorded and thus cannot construct the complete
candidate explanatory variable pool, the final dataset contains
572 dangerous events and 2080 normal driving reference
cases. Consider the mean distance (377 m) between every
two detectors and the speed limit, we use T=30 and l=300
m when constructing the candidate explanatory dataset.

B. Network Calibration

To simulate the real traffic accurately, we calibrate the
demand of different origin-destination pairs by using the
traffic measurements recorded by loop detectors on the trunk
link (measurements on on/off-ramps are not available) on
June 3rd, 2016. The southernmost cross-section of the trunk
link and 7 on-ramps are defined as origins, while the north-
ernmost cross-section of the trunk link and 12 off-ramps are
defined as destinations, which results in 56 OD pairs. There
are 45 detecting locations. Traffic measurements, including
speed and volume, are aggregated into a one-hour interval
for each detector. The popular Simultaneous Perturbation
Stochastic Approximation (SPSA [9]) algorithm, which has
been widely applied to solve the dynamic demand estimation
problem in the transportation community attributed to its
efficiency on large-scale problems, is used to address the
demand calibration task in this study with the following
objective function.

minw1f(ŝ
t, st) + w2f(q̂

t, qt) (13)

where st and qt are the vector of observed mean speed
and total volume in interval t, respectively, while ŝt and q̂t

are the corresponding simulated vectors. f(ẑ, z) is used to

1Refers to Table 26 and Table 28 in [8] for the details of the modeling
of HVs and CAVs in SUMO.

evaluate the goodness-of-fit. Here we apply the Root Mean
Square Normalized error (RMSN), which is defined as below.

f(ẑ, z) =

√
n
∑n
i=1(ẑi − zi)2∑n
i=1 zi

(14)

By calibrating the demand for different routes (ODs), we
expect to generate similar car-following and lane-changing
maneuvers as in real traffic. With the fact that lane-changing
behavior is a main trigger for traffic accidents, it is critical
to generate realistic lane-changing maneuvers in crash risk
analysis.

We set w1=w2=0.5. Figure 3 compares calibrated values
with true measurements. The calibrated network ultimately
leads to an average RMSN in 22 hours (the first and last
hour are used for traffic warm-up and dissipation process) of
29%, which is capable of recreating the real traffic properly.

Fig. 3. Comparison of target values and calibrated values

IV. RESULTS

A. Feature Evaluation

As described in Section II-D, by applying Algorithm 1, we
want to select the variables with most Gini importance but
slightly correlated to compose the explanatory dataset for the
binary classification model. In this section, first, we deploy
the first 10 variables ranked by Gini importance in Figure 4.
The superscript of the variable indicates the data source,
and the subscript indicates the spatial-temporal sub-segment
and the feature (only appropriate to standard deviations).
For example, σ(gps)

d,(−2,−2) is the standard deviation of distance
between CAVs in the second sub-segment on the upstream
during the time slice before the previous slice; σ(det)

s,(+1,−2)
is the standard deviation of vehicle speeds recorded by the
detector in the first sub-segment on the downstream during
the time slice before the previous time slice. Surprisingly,
all of them are extracted from the CAV GPS dataset, which
implies the necessity and benefit of introducing GPS in-
formation into consideration when constructing variables to
model the upstream and downstream traffic states ahead of
the happening of events.

However, considering the potential multicollinearity be-
tween variables, whenever we pick one variable, we have to
drop the highly correlated variables. In this study, 0.3 is used
as the correlation threshold ρmin. This selecting principle,
ultimately, recommends the variables listed in Table I. Four
of them are extracted from CAV GPS data. And two of
them are distance-based variables, while the rest three are
speed-based. This validates the aforementioned expectation,



Fig. 4. Feature Gini importance

i.e., distance-based variables can also provide very useful
auxiliary information when model traffic states as it can cap-
ture the spatial correlation of traffic. Furthermore, standard
deviations are reserved, evidencing that incongruous traffic
is more likely to produce an accident. Table I summarizes
the statistics of the selected important variables, where the
minimum value equaling zero means only one vehicle in the
relevant spatial-temporal sub-segment. And the correlation
matrix is given in Table II, which shows that there are no
significantly statistical correlations between these variables.

TABLE I
STATISTICS OF SELECTED VARIABLES

Variable Mean Min 50% Max Gini importance
σ
(gps)
d,(−2,−2)

49.44 0.00 48.80 129.07 15.89%

σ
(gps)
d,(−1,−1)

48.01 0.00 48.56 90.07 8.54%

σ
(gps)
s,(−1,−1)

2.32 0.00 1.97 11.12 0.23%

σ
(gps)
s,(+2,−2)

1.84 0.00 1.62 15.98 0.12%

σ
(det)
s,(+1,−2)

2.02 0.02 1.79 10.39 0.06%

TABLE II
CORRELATION MATRIX OF SELECTED VARIABLES

Variable 1© 2© 3© 4© 5©
σ
(gps)
d,(−2,−2)

1© 1

σ
(gps)
d,(−1,−1)

2© 0.29 1

σ
(gps)
s,(−1,−1)

3© 0.16 0.23 1

σ
(gps)
s,(+2,−2)

4© 0.05 0.04 -0.02 1

σ
(det)
s,(+1,−2)

5© -0.01 0.02 0.05 0.08 1

B. Model Comparison

In this section, we develop and test the proposed KLR
model, support vector machine (SVM) models and the con-
ventional logistic regression (LR) model, and then compare
their prediction performances. SVM with two typical kernels,
linear (SVM-Linear) and radial basis function (SVM-RBF),
are considered. First, from Figure 5, we can see that SVM-
RBF and the proposed KLR results in almost the same fig-
ures. While SVM-RBF has been validated to be an effective
model in crash risk analysis, we can claim that the KLR
model is also an appropriate alternative in similar tasks. On
the other hand, SVM-Linear and LR show relatively lower
precision, reflected as more FP.

Fig. 5. Confusion matrix of different models

In addition, Table III (five-fold cross validation) includes
the metrics for evaluating models in a more systematic way,
within which B-accuracy and F1 score are directly computed
from the confusion matrix, while AUC is calculated based
on the ROC curve. SVM-RBF performs best among the four
models in B-accuracy and F1 score, reaching 97.99% and
96.32%, respectively, while LR performs worst (94.21% and
93.14%, respectively). KLR-RBF has a similar B-accuracy
(97.26%) as that of SVM-RBF, but its F1 score shows an
apparent deficiency compared to the SVMs. As we explain
in Section II-E, B-accuracy gives the same weight to two
classes, while F1 score emphasizes more on the smaller class.
This means, KLR can perform as good as the best SVM
if the problem imposes the same weights on two classes,
but SVMs work better if the smaller class was emphasized.
Regarding the AUC, similarly, SVM-RBF and KLR get close
results, while SVM-Linear and LR are behind them. Figure 6
illustrates the ROC curves of these models. Furthermore, to
measure the effectiveness of the feature selecting procedure,
we also apply KLR on the first five principal components
(PCs) constructed by the principal component analysis (PCA)
algorithm. The result shows that, KLR-RBF and KLR-
RBF(PCA) are almost the same in B-accuracy and AUC,
though the latter outperforms the former in F1 score. That is
to say, the selected variables can capture as much variance
of the entire candidate explanatory dataset as the first five
orthogonal (uncorrelated) PCs.

TABLE III
MODEL COMPARISON

Model B-accuracy F1 score AUC
SVM-Linear 0.9565 0.9454 0.9614
SVM-RBF 0.9799 0.9632 0.9926

LR 0.9421 0.9314 0.9696
KLR-RBF 0.9726 0.9395 0.9927

KLR-RBF(PCA) 0.9735 0.9684 0.9978

Fig. 6. The ROC curves of different models



Fig. 7. KLR-RBF classifier performance

C. KLR Performance Analysis

Figure 7 demonstrates scatter plots of two of the first
three variables listed in Table I and the decision boundaries
of KLR. Besides, the B-accuracy is also provided at the
right-bottom corner. As we can see from the figure, (a)
shows an apparent non-linear boundary that separates two
classes, while (b) and (c) have nearly linear boundaries (this
also explains why SVM-Linear and LR can also perform
well in this task). Clearly, KLR can distinguish two classes
effectively with either non-linear or linear boundaries, which
is also supported by high B-accuracy values. Thus, one can
expect a good performance of KLR in various classification
problems.

V. CONCLUSIONS

Since V2I, V2V and GNSS devices assembled to CAVs
provide more diverse data, such as real-time speed, location
and the relative distance between them, it is necessary to
explore new methodologies to evaluate the real-time crash
risk in the mixed traffic flow environment. This paper de-
veloped a simulated urban expressway corridor in SUMO
and collected the traffic safety data and traffic data in mixed
traffic flow environments. After constructing several special
traffic feature variables, the important variables are identified
by the random forest. It found that the variables from GPS
are more significant than those from loop detectors. With the
help of the important variables, the kernal logistic regression
model based on radial basis function (KLR-RBF), support
vector machines (SVM) models and standard logistic regres-
sion models are introduced to tackle the real-time crash risk
evaluation tasks. After validation and comparison, the results
show that KLR-RBF has a good prediction performance like
SVM. And KLR-RBF can distinguish safe traffic flow and
dangerous traffic flow effectively with either non-linear or
linear boundaries. Still, this research does not come without
limitations. The dataset did not include the existing variables
on human drivers demographics, attitudes and perceptions.
Future work should also focus on active traffic managements
based on the real-time crash risk evaluation results.
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